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I. INTRODUCTION

The central difference between classical and quantum physics can be put succinctly as

the existence of a small parameter ~ 6= 0, in quantum theory. One consequence of this

fact is that, while the Lagrangian L is the natural functional in classical physics, the action

functional S = L/~ is the corresponding relevant quantity in the quantum theory.

Let us take a specific example, that of φ4 theory in 4 dimensions. The classical Lagrangian

density is

L =
1

2
∂µφ∂µφ− 1

2
m2φ2 − λφ4. (1)

Classically, the absolute value of λ does not matter since we can rescale the field and write

the λ dependence as an overall factor. i.e. if we write φ′ =
√

λφ, we have

L =
1

λ

(
1

2
∂µφ

′∂µφ′ − 1

2
m2φ′2 − φ′4

)
. (2)

In the quantum theory, we have to look at L/~. This implies that the relevant parameter

here is the dimensionless λ~. Semiclassical small ~ approximation is equivalent to small λ

approximation, and we can use these parameters interchangeably.

Theories with small (weak) coupling are studied typically using perturbation theory,

order by order in the coupling parameter. But this might not capture all the interesting

physics. To see this, consider the tunnelling amplitude through a potential barrier V (x) in

the semiclassical approximation

|T (E)|= exp

{
−1

~

∫ x2

x1

dx [2(V − E)]1/2

}
[1 + O(~)], (3)

where x1 and x2 are the classical turning points at energy E. We see that the leading behavior

of exp(−1/~) cannot be captured by any small ~ perturbation expansion.

To study the analogs of similar non-perturbative phenomena in quantum field theory, we

use the concept of instantons.

II. INSTANTONS IN QUANTUM MECHANICS

Our final goal is to understand instantons in a field-theoretic setting. But since we are

starting with a quantum mechanical system, we note at the outset, that the position of
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FIG. 1: Symmetric Double Well Potential

a particle in quantum mechanics plays the role of a quantum field in field theory. Hence

quantum mechanics is just field theory in 0 + 1 spacetime dimensions. Broadly speaking,

instantons arise in quantum mechanics (for that matter, in field theory too) whenever there

exists more than one classical ground state and quantum tunnelling can occur between these

ground states. A typical example of such a system is the symmetric double well potential

shown in Fig.1.

A starting point for studying such systems is to analyze the transition amplitude between

an initial and final state (which can be assumed to be a position operator eigenstate) in the

large time limit. The transition amplitude between the initial position xi at time ti = −T/2

and the final position xf at time tf = T/2 can be written as

〈xf |e−HT/~|xi〉 = N

∫
[dx]e−S/~. (4)

The L.H.S. is in the operator notation while the R.H.S. is in the Feynman path-integral

formalism. N is a normalization constant. We will be working with a Wick-rotated Euclidean

time throughout this paper.

To interpret this, we insert a complete set of energy eigenstates into the L.H.S. as

〈xf |e−HT/~|xi〉 =
∑

n

e−EnT/~〈xf |n〉〈n|xi〉 where H|n〉 = En|n〉. (5)

Evaluating the above transition amplitude in the large T limit will give us the lowest energy

eigenvalue and the corresponding eigenstate.

Considering the R.H.S, the action S in the exponential is given by

S =

∫ T/2

−T/2

dt

[
1

2

(
dx

dt

)2

+ V

]
(6)
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FIG. 2: Inverted Symmetric Double Well Potential

and [dx] denotes sum over all paths obeying the boundary conditions x(−T/2) = xi and

x(T/2) = xf .

In the large T limit, the path-integral will be dominated by the stationary points of the

action and evaluating it about these stationary points will tell us about the low-lying levels

and their corresponding eigenstates. The stationary solutions of the action are given by

δS

δx
= 0 = −d2x

dt2
+ V ′(x) (7)

This condition can be thought of as the classical equation of motion of a particle of unit

mass moving in a potential −V (x) and hence

E =
1

2

(
dx

dt

)2

− V (x) (8)

is a constant of motion. Applying this to the inverted double well (Fig.2), we see that two

obvious classical solutions obeying the boundary condition xi = ±a and xf = ±a are those

cases in which the particle just sits on top of one of the hills. The other non-trivial classical

solution is when the particle starts from one hill at ti = −T/2 and reaches the top of the

other hill at tf = T/2. Since we are looking at the T → ∞ limit, this solution occurs at

E = 0. Hence from Eq.(8),

dx

dt
=

√
2V (x), (9)

Integrating this, we get

t = t0 +

∫ x

0

dx′
[√

2V (x)
]−1

(10)
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The solution looks (refer Fig.3) very similar to static soliton solutions of non-linear differen-

tial equations. In our case, the solutions are functions of time, hence the name ‘Instantons’.

Our goal now is to calculate the energy and eigenstate corresponding to this non-trivial

‘instanton’ configuration. Here onwards, all the calculations in this section are very similar

to the background field method (refer [2], Sec. 13.3 and 16.6). We integrate over all leading

order fluctuations about a particular stationary solution. These fluctuations will be denoted

by xn(t) and we write

x(t) = x(t) +
∑

n

cnxn(t), (11)

where the xn(t) are fluctuations satisfying the boundary conditions xn(−T/2) = 0 and

xn(T/2) = 0 and are orthogonal in the sense of

∫ T/2

−T/2

dtxn(t)xm(t) = δnm. (12)

This integration is just a Gaussian integral and gives the usual square root determinant in

the denominator:

〈xf |e−HT/~|xi〉 = Ne−S(x)/~det
(−∂2

t + V ′′(x)
)−1/2

[1 + O(~)] (13)

This determinant can be evaluated by using a suitable regulator scheme for simple cases.

Let us first calculate it for the ‘uninteresting’ case when the particle just sits on top of one

of the hills in Fig. 2. In this case, let V ′′(x = ±a) = ω2. Evaluating the determinant in this
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case, gives in the large T limit,

Ndet
(−∂2

t + ω2
)−1/2

=
( ω

π~

)1/2

e−ωT/2. (14)

Hence using the observation below Eq.(5), we see that the ground state energy is

E0 =
1

2
ω~ [1 + O(~)] (15)

and the corresponding probability for staying at the bottom of the wells is given by

|〈x = ±a|n = 0〉|2 =
( ω

π~

)1/2

[1 + O(~)] (16)

This agrees with our intuitive understanding that in the absence of tunnelling, the particle

just sees a harmonic potential, with the ground state resembling the harmonic oscillator

ground state.

Now let us consider the case of the instanton solution. We first calculate S(x),

S(x) =

∫
dt

[
1

2

(
dx

dt

)2

+ V

]
=

∫ a

−a

dx(2V )1/2. (17)

For large t, x approaches ±a. Hence

dx

dt
= ω(a− x) (18)

⇒ (a− x) ∝ e−ωt (19)

Thus we see that the instanton is localized in time with width of the order 1/ω. This

tells us that in the large T limit, we should consider not just the one instanton solution,

but sum over all configurations with arbitrary number of well separated instantons and

anti-instantons (which are just the negative of the instanton solution). Let us study the n

instanton case. Since all the instantons are widely separated in time, the action is just nS0

where S0 is the one instanton action Eq. (17). Let the centers of these n instantons be at

t1, t2 . . . tn where

T

2
> t1 > t2 . . . > tn > −T

2
(20)

To evaluate the determinant in the n instanton case, we note that most of the time, the

expectation value of x is near ±a and it resembles the harmonic oscillator state. Thus the
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leading behavior is going to be just the harmonic oscillator answer with an n instanton

multiplicative factor Kn:

( ω

π~

)1/2

e−ωT/2Kn. (21)

We can determine K later by considering the one-instanton case. Since the location of the

center of each of the n instantons is arbitrary, we have to integrate over these positions,

∫ T/2

−T/2

dt1

∫ t1

−T/2

dt2 . . .

∫ tn−1

−T/2

dtn =
T n

n!
(22)

Each instanton has to be followed by an anti-instanton and vice-versa. Consequently, de-

pending on whether we are calculating 〈±a|e−HT/~|±a〉 or 〈±a|e−HT/~|∓a〉, we have to sum

over only even or odd n respectively.

〈a|e−HT/~|±a〉 =
( ω

π~

)1/2

e−ωT/2
∑

even/odd n

(
Ke−S0/~T

)n

n!
[1 + O(~)] , (23)

=
( ω

π~

)1/2

e−ωT/2 1

2

[
exp

(
KTe−S0/~)± exp

(−KTe−S0/~)] . (24)

Thus we see that there are two low lying states |+〉 and |−〉 whose energy difference is

given by 2~Ke−S0/~ and the probability of being in these states, to the lowest order, is the

same as being in the harmonic oscillator ground state. The energy splitting can be derived

directly using WKB approximation, but our understanding of how this came about using

the instanton picture, is easier to generalize to quantum field theories.

K can be calculated by considering the one instanton contribution to Eq. (23) and

equating it to a direct calculation. The direct calculation gives

〈a|e−HT/~|−a〉one inst. = NT

(
S0

2π~

)1/2

e−S0~ (−∂2
t + V ′′(x)

)−1/2

×det′
(−∂2

t + V ′′(x)
)−1/2

(25)

where the prime above the determinant indicates that we do not consider the zero eigenvalue

which arises as a result of the translational degree of freedom in choosing the center of the

instanton. Comparing this to the one instanton contribution to Eq. (23), we deduce

K =

(
S0

2π~

)1/2 ∣∣∣∣
det (−∂2

t + ω2)

det′ (−∂2
t + V ′′(x))

∣∣∣∣
1/2

(26)
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Instantons in Periodic Potentials:

The double well instanton analysis can be readily generalized to the periodic potential

case shown in Fig.4, where the minima are assumed to be located at unit intervals. Here

the number of instantons and anti-instantons are independent unlike the double well case,

where each instanton had to be followed by an anti-instanton. The only restriction is that

the difference between the number of instantons and anti-instantons should be equal to the

distance between the points about which we are calculating the transition amplitude. Hence

the analog of Eq.(23), in this case is

〈nf |e−HT/~|ni〉 =
( ω

π~

)1/2

e−ωT/2

∞∑
n,n=0

(
Ke−S0/~T

)n+n

n!n!
δn−n ,nf−ni

. (27)

We can write the Kronecker-Delta function as a Fourier transform,

δn−n ,nf−ni
=

∫ 2π

0

dθ

2π
eiθ(n−n−nf+ni). (28)

Now doing the sum over n and n gives

〈nf |e−HT/~|ni〉 =
( ω

π~

)1/2

e−ωT/2

∫ 2π

0

dθ

2π
eiθ(nf−ni)exp

(
2KT cos θe−S0/~) (29)

Thus we find a continuum of eigenstates |θ〉 labelled by the angle ‘θ’, with energy

E(θ) =
1

2
~ω + 2~K cos θe−S0/~ (30)

and the wavefunction amplitude given by

〈θ|x〉 =
( ω

π~

)1/2 1

2π
eixθ (31)

We see that our instanton-based analysis has yielded just the usual Bloch states in a periodic

potential and the parameter ‘θ’ is nothing but the quasi-momentum in the first Brillouin

zone.
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III. FINITE ACTION CONFIGURATIONS IN GAUGE THEORIES

We summarize our gauge theory conventions in Appendix A. To begin our analysis of

instantons in gauge theories, it is clear that we have to identify field configurations for which

the action is finite. In addition, for these configurations to represent physical vacua, they

must be gauge invariant. For finiteness of the action, the field strength has to fall off atleast

as fast as (1/r3) at infinity. A naive conclusion from this will be that the gauge potential

will have to go as 1/r2. But this is not true, what we require is that

Aµ ∼ g∂µg
−1 + O

(
1

r2

)
, (32)

where g(x) can be a function of the four dimensional angular variables only. This means

that every finite field configuration is associated with a mapping of the hypersphere, S3

to the gauge group, G. But each such mapping is not gauge invariant. Under a gauge

transformation,

Aµ → hAµh
−1 + h∂µh

−1. (33)

Thus

g → hg + O

(
1

r2

)
. (34)

Now if we could reduce g to identity by choosing h to be g−1, then we could eliminate g

from Eq. (32). But this is not possible in general, because we require h(x) to be continuous,

not just over the hypersphere S3 at infinity, but it has to be continuous over the whole four

dimensional space. In particular, we should be able to go continuously from h(x = 0) to

infinity. At the origin, h(x) has to be constant, independent of angular variables, for it to be

well defined. We note that all constant gauge transformations are homotopic to the identity

transformation. Hence we conclude that gauge invariant finite field configurations are those

for which h at infinity is homotopic to the identity. This means that our first task is to

identify the homotopy classes for mapping S3 to the gauge group G.

We will study two specific examples and later use a theorem from Lie group theory to

generalize this to arbitrary gauge groups.

First we consider Abelian U(1) gauge theory in two-dimensional Euclidean space. Each

element of U(1) can be represented by eiθ. This is isomorphic to the circle S1. Our group
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representation maps the spatial circle S1 onto the U(1) circle S1. It is clear that the homo-

topy classes are given by the number of times one circle wraps around the other. Hence the

elements of all homotopy classes can be represented by

g(θ) = eiνθ (35)

where ν is an integer and 0 ≤ θ < 2π. Hence each ν represents one homotopy class. We can

write ν in terms of any arbitrary member of the corresponding homotopy class as

ν =
i

2π

∫ 2π

0

dθg
dg−1

dθ
(36)

Also it is easy to see that if

g(θ) = g1(θ)g2(θ) then ν = ν1 + ν2. (37)

Now if we define

Gµ =
i

2π
εµνAν , (38)

then using Eq.(32), we can write

ν = lim
r→∞

∫ 2π

0

rdθr̂µGµ, (39)

where r̂µ is the unit radial vector. Use Gauss’s theorem and the definition of field strength

to write

ν =

∫
d2x∂µGµ =

i

4π

∫
d2xεµνFµν (40)

This completes our task of identifying the homotopy classes in this problem and writing an

expression for it in terms of the physical field strength.

Next we consider the case of the non-abelian gauge group, SU(2) in four dimensional

Euclidean space. Again, SU(2) is topologically identical to S3. Hence, here we consider

the mapping of S3 onto S3. This homotopy group is again isomorphic to Z, the group of

integers under addition. Proceeding very similar to the previous case, (Since the details of

this calculation are not very instructive or essential for further discussion, I omit them here,

they can be found in [1]), we can write the winding number in terms of field strength as

32π2ν =

∫
d4x(F, F̃ ), (41)
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where F̃ is the dual field strength given by F̃µν = 1
2
εµνρσFρσ.

We can use this result for any arbitrary non-abelian gauge group since there is a theorem

in group theory called Bott’s theorem which states that the mapping of S3 onto any group

G can be continuously deformed into an SU(2) subgroup of G.

IV. Θ VACUA

In the previous section, we identified that each finite action gauge invariant field con-

figuration was in one-to-one correspondence with the winding number ‘ν’. Let us put the

system in a box of space-time volume V T . Now we want to calculate the energy of these

finite action configurations. For this, first we have to make sure we are in an energy eigen-

state. We can identify any state as a stationary state if the contribution from that state to

the path integral, F can be time-factorized. i.e.

F (V, T1 + T2) = F (V, T1)F (V, T2) (42)

Let the contribution to the path integral from a configuration with definite winding number

n be F (V, T, n). From Eq.(41), we see that these quantities obey the law

F (V, T1 + T2, n) =
∑
n1 ,n2

F (V, T1, n1)F (V, T2, n2)δn1+n2 ,n (43)

The restriction on n1 + n2 arises because of the composition property in Eq.(37). We see

that these states with definite winding number are not energy eigenstates since they do not

obey the corresponding simple time-factorization property. This can be easily remedied if we

observe that the above composition law for the winding states is a convolution in the winding

number space. Hence if we go to the Fourier transform space, they will time factorize,

F (V, T, θ) =
∑

n

einθF (V, T, n) (44)

⇒ F (V, T1 + T2, θ) = F (V, T1, θ)F (V, T2, θ) (45)

We denote these energy eigenstates as |θ〉 (these are the famous/infamous ‘θ’ vacua). We

can write in this basis, (~ = 1)

F (V, T, θ) ∝ 〈θ|e−HT |θ〉. (46)

= N

∫
[dA]e−Seiνθ. (47)
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All this analysis bore a remarkable similarity to the periodic potential case in quantum

mechanics. This can be understood if we think of the winding numbers as labelling the

points on a one-dimensional lattice and the θ vacua as nothing but the Bloch eigenstates.

The expression for the ground state energy can be written down in analogy with the

periodic potential case. Here we have to write spacetime volume ‘V T ’ instead of ‘T ’ since

we are working in a 3 + 1 dimensional field theory. Hence the path integral contribution

from a single θ eigenstate is

〈θ|e−HT |θ〉 ∝
∞∑

n,n=0

(
Ke−S0/~V T

)n+n
ei(n−n)θ

n!n!
(48)

= exp
(
2KV Te−S0 cos θ

)
, (49)

where the factor ‘K’ comes from the usual determinant got by integrating out the fluctuations

around the classical vacuum. Hence the ground state energy density is given by

E(θ)

V
= −2K cos θe−S0 . (50)

We can calculate expectation value of other operators w.r.t this ‘θ’ vacuum. As an

example,

〈θ|(F (x), ˜F (x))|θ〉 =
1

V T

∫
d4x〈θ|(F, F̃ )|θ〉 (now use Eq.(41)) (51)

=
32π2

∫
[dA]νe−Seiνθ

V T
∫

[dA]e−Seiνθ
(52)

= −32π2i

V T

d

dθ
ln

(∫
[dA]e−Seiνθ

)
(now use Eq.(47) and Eq.(48)) (53)

= −64π2iKe−S0 sin θ. (54)

This completes our analysis of the θ vacua. We note that these vacua are indeed physically

different, since physical quantities such as energy density and expectation value of various

operators depend on the particular θ vacuum we are in.

V. CONFINEMENT IN 2 DIMENSIONS

Here, we study a toy model where non-perturbative physics (in our case, instantons)

completely changes the perturbation theory based particle spectrum.
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Consider the Abelian Higgs model in two dimensions:

L =
1

4e2
(F, F ) + Dµψ

∗Dµψ +
λ

4
(ψ∗ψ)2 +

µ2

2
ψ∗ψ. (55)

Here ψ is a complex scalar field coupled to an Abelian gauge field.

If µ2 > 0, then in 4 space-time dimensions, the spectrum is simple, consisting of a charged

meson, its anti-particle and the massless vector gauge boson. In two spacetime dimensions,

there is no photon as there are no available transverse directions for a massless gauge field.

Hence the Coulomb force say, between two external charges, will be independent of distance.

This means we cannot really separate a meson and its anti-particle and they are ‘confined’.

The spectrum is similar to a positronium bound state except that the meson bound state is

stable as it cannot annihilate into photons.

The more interesting part comes when µ2 < 0. Normally in higher dimensions, we will

expect the Anderson-Higgs mechanism to occur due to spontaneous symmetry breaking. The

gauge field will eat the Goldstone boson and become massive. But there is a famous theorem

due to Mermin-Wagner and Coleman which states that no spontaneous symmetry breaking

can occur in two dimensions. How do we reconcile these opposing statements? Instantons

save us from this quandary and we will see that we can retain the original picture of 2D

confinement which occurs for µ2 > 0. But we will have an exponential dependence of the

long range force on ~ unlike the latter case where the force does not depend on ~.

First we set the minimum of the action to zero. We add a constant to write it as

L =
1

4e2
(F, F ) + |Dµψ|2 +

λ

4

(|ψ|2 − a2
)2

. (56)

For the third term to remain finite at r = ∞, |ψ| has to approach a. But there is no

restriction on the phase of ψ. Hence

lim
r→∞

ψ(r, θ) = a g(θ), (57)

where g is complex with |g| = 1 and g is an element of U(1). Using this result and demanding

that the second term remain finite as well when r →∞, we get

Aµ = g∂µg
−1 + O

(
1

r2

)
(58)

This condition is exactly similar to Eq.(32). Hence we can use the two dimension U(1) gauge

theory results which we derived in that section. In particular, finite energy configurations
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are classified by the winding number ν. From Eq.(40) and using Stokes’ theorem, we can

write

ν =
i

4π

∫
d2xεµνFµν =

i

2π

∮
Aµdxµ (59)

Just as before, we will have a set of θ vacua, with energy densities given by

E(θ)

L
= −2K cos θe−S0 . (60)

Similar to Eq.(51), we can write

〈θ|εµνFµν |θ〉 = 8πiKe−S0 sin θ. (61)

Next we move on to study the Coulomb force between external test charges. This is done

by introducing two static charges of magnitude q and opposite sign separated by a distance

L′. Then we calculate the change in vacuum energy ∆, due to these external charges. For

this, we study the finite loop comparator involving a Wilson loop integral

W = exp

(
−q

e

∮
Aµdxµ

)
, (62)

where the loop is a rectangle of spacetime area L′T ′. The term in the exponential is just the

energy density from all the configurations within the loop. Then the shift in vacuum energy

for the θ vacuum is given by

∆ = − lim
T ′→∞

1

T ′ ln〈θ|W |θ〉 (63)

We can write this expectation value as a path integral:

〈θ|W |θ〉 =

∫
[dA][dψ][dψ∗]We−Seiνθ

∫
[dA][dψ][dψ∗]e−Seiνθ

(64)

The denominator is just what we analyzed in Eq.(48) to write the energy density:

〈θ|e−HT |θ〉 = exp
(
2KLTe−S0 cos θ

)
, (65)

The numerator can be split into a part inside the loop and one outside the loop. The outside

part is just the denominator integral except that the available spacetime area is (LT −L′T ′).

In the numerator we can write using Eq.(59),

W = exp
(
2πiqν inside/e

)
(66)
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where ν inside is the contribution to the winding number from finite field configurations within

the loop of area L′T ′. Hence the contribution from this part is similar to the previous case

but with ‘θ + 2πq/e’ instead of ‘θ’ and with spacetime area L′T ′.

Thus we can write for the expectation value:

ln〈θ|W |θ〉 = 2Ke−S0 [(LT − L′T ′) cos θ + L′T ′ cos(θ + 2πq/e)− LT cos θ] (67)

where the three terms come from the inside loop numerator, outside loop numerator and

the denominator respectively. Hence using Eq.(63),

∆ = 2L′Ke−S0 [cos θ − cos(θ + 2πq/e)] (68)

We see that the energy shift due to the presence of external test charges is directly propor-

tional to the distance between them. Thus the force between them, which is the gradient

of the energy shift, is constant, as we mentioned in the beginning. Hence we conclude that

µ2 < 0 does not really affect the theory as instantons rescue us and keep the mesons con-

fined. But ∆ has an e−1/~ (we had set ~ = 1 but S0 is always divided by ~. ) dependence

which does not arise in the positive µ2 case.

APPENDIX A: GAUGE THEORY CONVENTIONS

We will adopt the convention of taking the Lie algebra generators to be anti-Hermitian,

[T a, T b] = fabcT c (A1)

and the Cartan inner product is

(T a, T b) = δab. (A2)

The gauge fields Aµ are taken as matrix-valued vector fields in the adjoint representation of

the Lie algebra,

Aµ = gAa
µT

a, (A3)

where g is the gauge coupling. The field strength tensor in this notation is

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. (A4)
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The action in Euclidean space is given by

S =
1

4g2

∫
d4x(Fµν , Fµν) ≡ 1

4g2

∫
F 2. (A5)

The gauge transformations are represented as

g(x) = eλa(x)T a

. (A6)

Under such a gauge transformation,

Aµ → gAµg
−1 + g∂µg

−1 (A7)

and

Fµν → gFµνg
−1 (A8)

The classical equation of motion for this theory is

DµFµν = 0, (A9)

where Dµ is the covariant derivative whose action on the field strength is

DλFµν = ∂λFµν + [Aλ, Fµν ]. (A10)
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